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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 3-7-59A

PITCH-UP PROBLEM - A CRITERION AND METHOD OF EVALUATION

By Melvin Sadof?f

SUMMARY

A method has been described for predicting the probable relative
severity of pitch-up of a new airplane design prior tc initial flight
tests. An illustrative example has been presented which demonstrated
the use of this procedure for evaluating the pitch-up behavior of a
large, relatively flexible airplane. It has also been shown that for
airplanes for which a mild pitch-up tendency is predicted, the wing and
tail loads likely to be encountered in pitch-up maneuvers would not
assume critical values, even for pilots unfamiliar with pitch-up.

INTRODUCTION

One of the stability problems of concern to airplane design and
operational groups in recent years is pitch-up or an inadvertent stalling
tendency that usually occurs well below the maximum 1ift capabilities of
an airplane. This pitch-up behavior, insofar as the pilot is concerned,
restricts the useful maneuvering range of an airplane since accelerated
flight near the pitch-up region may result in unintentional stalls and
spins at low dynamic pressures and in excessive airframe loads at high
dynamic pressures. One of the important factors contributing to pitch-up
is the destabilizing trend in the variation of pitching moment with 1ift,
which is characteristic of airplane configurations with swept wings or
horizontal tails placed well above the extended wing-chord plane. Since
high-speed performance considerations have generally resulted in the use
of these configurations, most current high-performance airplanes exhibit
a pitch-up tendency in varying degree. This paper is concerned with two
aspects of the pitch-up problem of interest to airplane design and opera-
tional groups. First, a method is briefly outlined for assessing the
probable relative severity of pitch-up prior to actual flight tests.

Even though this method was designed primarily for evaluation of fighter
airplanes, its extension to larger, relatively flexible airplanes is
demonstrated by means of an illustrative example. Second, the loads
aspects of the pltch-up problem are discussed with particular reference
to the possibility of exceeding the design wing and horizontal-tail
loads in pitch-up maneuvers.



SYMBOLS
Cy, airplane 1ift coefficient
CL,max maximum 1ift coefficient
Cn airplane pitching-moment coefficient
Cma pitching-moment-curve slope
Fq pilot control force, 1b
g acceleration due to gravity, 32.2 ft/sec?
Iy airplane pitching moment of inertia, 1lb-ft-sec2
Lg maneuvering horizontal-tail load, Iyé/lt, 1b
ly horizontal-tail length, ft
m airplane mass, lb-secg/ft
n alrplane load factor, g units
q dynamic pressure, lb/sq ft
v airplane velocity, ft/sec
W airplane weight, 1b
M Mach number
M(a) curve defining variation of airplane pitching moment with «,
f£-1b
Mg, damping due to &, ft-1b/radian/sec
Mg control-surface moment effectiveness, ft-lb/radian
Mg damping due to 6, ft-1b/radian/sec
Z(a) curve defining variation of airplane normal force with «, 1b

Zg control surface 1ift effectiveness at constant «, 1b/radian



a airplane angle of attack, deg or radians

0 airplane pi?ch angle, radians

V4 airplane flight-path angle, radians

9] control surface deflection, deg or radians
Be elevator deflection, deg

Brec recovery control rate, dég/sec

® airplane pitching acceleration, radi&ns/sec2

A dot over a symbol denotes the derivative with respect to time.
DISCUSSION

Before outlining methods for assessing the pitch-up behavior of a
new airplane design, the pitch-up characteristics of two existing air-
planes will first be examined in order to illustrate the basic problem.
In figure 1, an experimental time history, representative of a swept-wing
medium bomber with a mild pitch-up tendency, is shown. Figure 2 pre-
sents a typical time history of a severe pitch-up experienced with a
swept-wing fighter airplane. The Mach numbers for these maneuvers were
0.8 at 35,000 feet for the bomber and 0.9 at 35,000 feet for the fighter.
The various quantities plotted in these two figures serve to define com-
pletely the pitch-up characteristics of these two airplanes and include
the pilot control force and position inputs and the airplane angle-of-
attack, load-factor, and pitching-acceleration responses. An inspection
of these time histories indicates that a severe pitch-up is character-
ized by large inadvertent increases in angle of attack of 10° or more,
by a corresponding increase in load factor of about 25 percent of the
design load, and by the extremely large recovery transient (shown by the
peak negative pitching acceleration) which resulted from the pilot's
applying large and rapid corrective-control inputs in an ettempt to min-
imize the overshoots. For the medium bomber, an attitude overshoot of
less than 2° and a load-factor overshoot of about 10 percent of the
design load are shown. Also, corrective control was applied at a rather
leisurely rate of 5O/sec, and the resulting recovery transient was fairly
mild. For the fighter airplane (fig. 2), the pilot's corments indicated
that the pitch-up was abrupt and relatively uncontrollable and that maneu-
vers above the pitch-up boundary would generally result in inadvertent
stalling, in possible spin entry, and in exceeding the desired load fac-
tor considerably. For the medium bomber (fig. 1), the pitch-up was



described as mild, but with some tendency to exceed the desired load
factor. The reversal in the stick-force gradient above the pitch-up
boundary was considered objectionable by the pilots, but they still felt
that they had considerable control over the peak attitudes and load fac-
tors developed during pitch-up.

METHOD OF EVALUATION

In order to determine analytically from available wind-tunnel data
the relative severity of pitch-up of a new airplane design prior to
actual flight experience, both a rational method for predicting the air-
plane response during pitch-up and a criterion relating this response to
pilot opinion must be established. The former requirement may be satis-
fied by defining a standard evaluation maneuver based on control inputs
that are likely to be used by pilots in pitch-up maneuvers. Figure 3
illustrates the three stages in which this synthesized maneuver is
assumed to occur. The first stage is an initial control ramp corre-
sponding to a certain entry load-factor rate into the pitch-up region.
(For the present study, this rate was fixed at about 0.5g per second.)
The second stage is essentlally a time interval equal to the pilot's
response time between his initial perception of pitch-up and his appli-
cation of corrective control. In the third stage, the pilot is assumed
to apply corrective control to the forward stop at various rates to check
the pitch-up. Before this standardized maneuver can be constructed, it
is first necessary to determine an airplane response quantity which the
pilot associates with the onset of pitch-up and a reascnable response
time. From inspection of time histories of pitch-up maneuvers obtained
in flight and from ground tests in a pitch simulator, it was found that
the pilot associated onset of pitch-up with a threshold level of pitching
acceleration of about 0.15 radian/secQ. An average response time of
about 0.4 second was also determined. This information, together with
basic wind-tumnnel data, may then be used tc synthesize the model evalua-
tion maneuver and to compute the desired response quantities, which
include pitch acceleration and the angle-of-attack and load-factor
overshoots.

In order to establish a criterion relating pertinent computed
response quantities in pitch-up maneuvers to pilot opinion, this synthe-
sized pitch-up maneuver was applied to six airplanes which exhibited
pitch-up tendencies ranging from mild to severe, according to NASA pilots
who flew these airplanes. The basic aerodynamic data for these airplanes
and the equations of motions used in the computations are shown in fig-
ure 4. Airplanes A and B are swept-wing fighter airplanes with elevator
control. Airplanes C, D, and E are swept-wing fighter alrplanes with
all-movable stabilizers. Airplane F is a swept-wing medium borber with
elevator control. Computations were made for these six reference



airplanes at a Mach number of about 0.9, since flight tests indicated
that the pitch-up was most severe at this speed. Also, computations
were performed for each airplane at two altitudes: 35,000 feet, which
was the altitude at which most of the research flight experience was
obtained with these airplanes, and at lower altitudes where the pitch-up
region was assumed entered in a 6g maneuver for the fighters and in a

3g maneuver for the bomber. Before the results of the computations are
presented, the objectives of a criterion based on these computed results
should be noted. They are as follows:

(1) The criterion should validate the computational procedure based
on the synthesized pitch-up evaluation maneuver.

(2) The criterion should then enable design or operational groups
to assess the severity of pitch-up of a given design relative to that of
six existing reference airplanes already evaluated by NASA pilots.

(3) The criterion should provide some information relating the mag-
nitude of the overshoots to the pilots' control response initiating the
recovery phase of the pitch-up maneuver. (As will be noted subsequently,
this is of importance in assessing the probability of critical tail loads
being encountered in pitch-ups.)

The primary results of the computations are presented in figure 5
where the computed overshoots at an altitude of 35,000 feet and a Mach
number of about 0.9 are related to numerical pilot-opinion ratings
obtained during flight evaluations of the six reference airplanes.

These results are given for a relatively low recovery control rate of
10°/sec because it was found that the pilots based their opinions on the
overshoots associated with these low rates rather than the maximum that
they were capable of applying. The pitch-up rating schedule used during
the flight evaluation is explained in table I. It is shown in figure 5
that a good correlation exists between the magnitudes of the overshoots
and the results of flight evaluations, and this agreement lends some
confidence to the computational procedure used. For example, airplanes A
and B with a overshoots in excess of gbout 11° were assigned unsatisfac-
tory ratings of 8 and 7, respectively. As noted in table I, these
ratings are reserved for airplanes with a relatively severe pitch-up for
which there is an increased tendency for the pilot to apply large, abrupt
corrective control. On the other hand, airplanes E and F with an a over-
shoot generally under 4° were assigned a marginally satisfactory rating
of 2 which implies a mild, barely perceptible pitch-up with little tend-
ency for the pilot to apply extreme corrective control to check the
pitch-up. By comparing the critical computed overshoots with the cor-
responding values for these six reference airplanes, design and opera-
ticnal groups are also provided with a method for assessing the probable
relative severity of pitch-up of a new design. Applied in this manner,
the method 1s also useful for determining the modulating effects of
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aerodynamic modifications or automatic control devices on a given design.
Also, if the pllot rating schedule in table I or the results presented
in time-history form in figures 1 and 2 are referred to, it is noted that
as the magnitude of the computed overshoots increases and pilot opinion
deteriorates, the pillot corrective-control response tends to become more
extreme and results in vioclent recovery transients and increased wmaneu-
vering tail loads.

ILLUSTRATIVE EXAMPLE

To illustrate the use of this method in evaluating the pitch-up
behavior of a large airplane, the procedure used for the medium swept-
wing bomber will be examined. For large flexible alrplanes of this
type, the computational procedure was different 1n two important respects
from that used for the fighters. First, since the computed pitching
acceleration did not build up to the threshold value established from
simulator and flight tests of fighters, it was found necessary to alter
the standard evaluation maneuver. This was accomplished by assuming
that the pilot initially perceives pitch-up at an angle of attack corre-
sponding to the initial sherp destabilizing break in the pitching-moment
curve - in this case, where the airplane stability first reduces to zero.
Second, it was found that the effects of flexibility had an important
bearing on the computed pitch-up behavior of this alrplane. For example,
as shown in figure 6, neglecting these effects by using rigid-model
pitching-moment data resulted in a computed o overshoot of about 8°.

This value compares rather poorly with the actual value of about 2° com-
puted for the flexible airplane. The point to be made here is that for
large flexible airplanes, the effects of flexibility, particularly those
on the airplane pitching-moment curve, must be properly accounted for
before a reasonable prediction of pitch-up behavior can be attempted.

A word of caution should be injected here. Since the rating sched-
ule shown in table I was used primarily for fighters, there may be some
question of its applicability to transport types. NASA pilots who have
flown both fighters and transports feel that transport requirements
should be somewhat more severe than those for fighters because of addi-
tional considerations for passenger comfort and lower design load fac-
tors. They have indicated, tentatively, that acceptable transport
ratings would fall in the range of O to 2, rather than the 0 to 5 range
noted for the fighters in the table. This implies that only a mild
pitch-up, comparable to that observed for the swept-wing medium bomber,
would be considered acceptable for jet-transport airplanes. However,
the actual range of acceptable behavior for transports would have to be
defined by the appropriate certifying agency.



LOADS ASPECTS OF THE PITCH-UP PROBLEM

It was noted previously that one facet of the pitch-up problem of
concern to operational groups was the possibility of inadvertently
exceeding the design wing and tail loads in pitch-up maneuvers. This
possibility is examined first at the relatively high altitude of
35,000 feet where the pitch-up region is entered at load factors well
under design values for the six alirplanes considered in this study. In
figure 7, bar graphs of the computed peak load factors and maneuvering
tall loads are shown for the two airplanes rated unsatisfactory by the
pilots - airplanes A and B - and for the two airplanes rated marginally
satisfactory - airplanes E and F. Results are presented for two
recovery control rates in each case, a relatively low rate of 1OO/sec
and the maximum rates possible. The load-factor overshoots and maneu-
vering tall loads for these four example airplanes are shown by the
shaded areas in this graph. Note that the tail loads have been nondi-
mensionalized by dividing by the airplane weight. It is evident from
these results that the loads problem is not likely to be critical in
pitch-up maneuvers encountered at these flight conditions. The maximum
load factors, even for airplanes with relatively severe pitch-up tend-
encies, remain well under design values, due either to CL,max limitations

or to the reduced lift-curve slope characteristic of these airplanes in
the pitch-up region. Similarly, the maneuvering tail loads do not attain
critical values due either to typical limitations imposed by the forward
control stop or to the maximum recovery control rates available on these
airplanes. ° :

The more critical flight conditions at lower altitudes and higher
dynamic pressures where the piltch-up region is entered at load factors
close to design levels are examined next. In this case, it might be
expected that both the wing and tail loads may assume critical values.
To illustrate this, the sresults of computations where the pitch-up region
is entered at about 80 percent of the design load factor, that is, about
6g for the fighter types and 3g for the bomber airplane, are presented
in figure 8 for the four example airplanes. It may be seen from these
results that the pilot is faced with a difficult problem, particularly
if he penetrates the pitch-up region at this flight condition with an
airplane with a moderately severe pitch-up tendency. If he attempts to
check the pitch-up with high recovery control rates, the wing loads in
excess of design values are minimized, but at the expense of the maneu-
vering tail loads exceeding design levels. On the other hand, if rela-
tively low recovery control rates are used, the wing loads tend to
exceed the design load considerably. For the two airplanes whose pitch-
up behavior was considered fairly mild by the pilots at 35,000 feet, the
overshoots, even for these critical flight conditions, are relatively
small and unaffected by recovery control rate. For this reason, in
addition to the reduced probability of extreme recovery control rates



being applied to check mild pitch-up tendencies, the possibility of
exceeding the design tail loads In pitch-up maneuvers, even for pilots
relatively inexperienced with pitch-up, is considered fairly remote.

CONCLUDING REMARKS

A method has been described for predicting the probable relative
severity of pitch-up of a new airplane design prior to initial flight
tests. An illustrative example has been presented which demonstrated
the use of this procedure for evaluating the pitch-up behavior of a
large, relatively flexible airplane. It has also been shown that for
airplanes for which a mild piltch-up tendency is predicted, the wing and
tail loads likely to be encountered in pitch-up maneuvers would not
assume critical values, even for pilots unfamiliar with pitch-up.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 5, 1958
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TABLE I.- PILOT RATING OF PITCH-UP

Adjective Numerical D Lot
rating rating escription
Satisfactory 0 Satisfies stability and control requirements
Marginally 1 Pitch-up ba?ely p?rceptlble - little ten—.
satisfactory 5 dency f?r pilot to apply rapld and excessive
corrective control
Unsatisfactory 3 Pitch-up is more apparent - there may be some
but L tendency for the pilot to apply rapid and
acceptable 5 perhaps excessive corrective control
Pitch-up severe ranging from controllable
6 only with greatest difficulty to practically
Unsatisfactory 7 uncontreollable - increased tendency for the
8 pilot to apply rapid and excessive correc-
tive control
Pitch-up so severe that airplane is uncon-
9 trollable - some possibility of entering a
Unacceptable 10 spin or other unusual maneuver from which

recovery may be difficult or impossible
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SYNTHESIZED PITCH-UP MANEUVER
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CALCULATED OVERSHOOTS VERSUS FLIGHT RATINGS
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PEAK LOAD FACTOR AND TAIL LOADS
AT 35,000 FEET
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